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Introduction

Epidemic Modeling

Epidemic models describe and predict the spread of infectious diseases within a population.

Compartmental Models

Divide the population into distinct “compartments” representing different stages of the disease.
Common compartments include Susceptible, Infectious, Recovered, and sometimes Exposed or
Dead.

Stochastic models
Incorporate randomness, recognising that disease transmission is not purely deterministic and
that random events (e.g., super-spreader events) can affect the course of an epidemic.

Examples: Agent-based models, Monte Carlo simulations, Markov chains.

Network Models
Network models represent individuals as nodes and interactions as edges in a network, simulating
disease spread through social or spatial contacts.

en.wikipedia.org/wiki/Compartmental_models_in_epidemiology
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SIR

SIR Model

The population of N individuals is divided into three compartments:
S individuals susceptible to be infected;
I individuals infected;
R individuals recovered from the disease (and now have acquired immunity to it).
si
BN I
///’—_\\\‘ ///’—_‘\\‘

Susceptible Infectious Recovered
S(1) 1(z) R(1)

@ Individuals in S can become, rate /3, infected after positive contact with an 7/ individual. The
number of contacts is ST/N.

o They develop immunity to the disease, at a y cure rate, so they leave / compartment.

scientific-python.readthedocs.io/en/latest/notebooks_rst/3_Ordinary_

Differential_Equations/02_Examples/Epidemic_model_SIR.html
5037
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SIR Model Equations

SIR

Susceptible
5(1)

Infectious

yI
T

@ (3 > 0, the rate of contraction of the disease (transmission parameter).

@ 7 > (, mean recovery rate

ds
dt
dl
dt
dR
dt

—BSI/N
BSI/N —~I
I

Recovered
I(t) R(t)

Assume dis-
ease spread is
fast time scale

SO can ignore
natural birth-
s/deaths/etc.
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SIR Parameter Dependence

Transmission rate, (3

[ > 0: the rate of contraction of the disease (transmission parameter).
@ Greater [ reflects a more contagious infection = (in the limit) lower S and higher R.

SIR with y = 1.0 and varying .

Susceptable (S) Infected (1) Recovered (E)

500 — B=0.1
— B=05

400 — B=1.0
— B=15
— B=2.0

300

200

100

0 D&
0 20 40 60 0 20 40 60 0 20 40 60
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SIR Parameter Dependence

Recovery rate, v

~ > 0: mean recovery rate
@ Greater +y reflects shorter infectious period = (in the limit) higher S and lower R.

SIR with B = 1.0 and varying y.

Susceptable (S) Infected (1) Recovered (E)

500 — y=0.1

—— y=0.5

400 — =10

—_ y=15

—_— y=2.0
300
200
100
0

0 20 40 60 0 20 40 60 0 20 40 60
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SIR Parameter Dependence

Basic Reproduction Number, R I

Ry is a critical concept in epidemiology that helps to quantify how contagious or transmissible an
infectious disease is within a susceptible population. In the context of the SIR model,

is defined as the average number of secondary infections generated by a single infectious
individual in a fully susceptible population.

The value of Ry indicates how the disease will spread in the early stages of an outbreak:

Each infected individual infects fewer than one person on average,

<1 meaning the disease will eventually die out.
R —1 The disease will be endemic, maintaining a steady state without grow-
0 o ing or dying out.
> Each infected person, on average, transmits the infection to more than

one other person, leading to an epidemic (the infection will spread).

9 of 37



SIR Parameter Dependence

Basic Reproduction Number, R

IT

1000

800

600

200

1000

800

600

Ry < 1

SIR Model (8 =0.26, y = 0.59) = Ro=0.44

Ry =1 Ry > 1

SIR Model (8=0.79, y = 0.79) = Ro=1.00

SIR Model (8 =0.59, y = 0.26) = Ry =2.27

on average, meaning the dis-
ease will eventually die out.

1000 1000
— Susceptible
—— Infected
— Recovered 800 80
600 — Susceptible 600 Susceptible
— infected — nfected
400 —— Recovered 400 —— Recovered
200 200
0 0
0 2 s 75 100 125 10 175 200 0 25 S 75 10 125 150 175 200 0 25 5 75 100 125 150 175 200
1000 1000
800 800
600 600
400 400
200 200
0 o
infects fewer than one person disease will be endemic, main- infects more than one other

taining a steady state without
growing or dying out.

person, leading to an epidemic
(the infection will spread).
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SIR Parameter Dependence

Basic Reproduction Number, R 111

Factors Influencing, Ry

o Infectious period:
Longer infectious periods (i.e., lower 7y) increase Ry.

@ Transmission rate:
Higher contact rates or more effective transmission (i.e., higher ) increase Ry.

Limitations of R

o It assumes a fully susceptible population, which is rarely the case after an outbreak has
begun.

@ Ry can vary across different environments or populations. (Think urban vs. rural.)

o Interventions like quarantine or social distancing are not reflected in the R value.

en.wikipedia.org/wiki/Basic_reproduction_number
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SIR Parameter Dependence

Herd Immunity Threshold, H I

The basic reproduction number also helps determine the herd immunity threshold:
1

H=1—-—

Ry

This is the proportion of the population that must be immune (either through recovery or
vaccination) to prevent the disease from spreading further.

Higher R values require a larger immune proportion in the population to achieve herd immunity.

Ry H
Measles 12-18  92%-94%  (a very high threshold, which is why
high vaccination coverage is critical)
Mumps 10-12  90%-92%
COVID-19 2-3 50%—-67% (initial estimate, current is 2.9-9.5)
Flu ~1.3 ~23%

Ebola 1.3-2.0 23%-50%

12 of 37



SIR

Parameter Dependence

Example 5 =0.8,7=02 — Ry=4,H=0.75

IT

H = 0.75% so in a population of 500, this corresponds to 375 immune.

0% immune

SIR Model (8 = 0.80, y = 0.20) = Ro =4.00

— Susceptile

At outbreak there is
no immune individuals
and Ry > 1, so disease
spreads unchecked.

60% immune

SIR Model (8 = 0.80, y = 0.20) = Ro = 4.00

ﬁ

— Susceptible

75% immune

SIR Model (B = 0.80, y = 0.20) = Ro = 4.00

80% immune

SIR Model (8= 0.80, y = 0.20) = Ro=4.00

— Susceptie
— Infected
— Recovered

T T 1 1 1 |

— Susceptile

At outbreak, population has
(300 individuals) 60% immune,
just below threshold. Disease
spread is more limited

300

200

100

At outbreak, population has
(375 individuals) 75% im-
mune, at threshold. Disease
outbreak does not occur (even
with Ry > 1)

0

2% 50 75 100 125 160 175 200

0 25 5 75 100 125 15 175 200

At outbreak, population has
(400 individuals) 80% immune,
above threshold. Disease out-
break does not occur (even

with Ro > 1) 13 of 37



SIR Parameter Dependence

Achieving Herd Immunity Through Vaccination

Vaccination is the safest and most effective way to achieve herd immunity, especially for diseases

with high Ry. The proportion of the population that needs to be vaccinated to achieve herd
immunity is:

V:H l_R(J
E

where
V' is the vaccination coverage needed for herd immunity,

E is the vaccine efficacy (the percentage of vaccinated people who actually develop
immunity).

For example, if a disease has Ry = 3 and a vaccine efficacy of 90%, then:
1 -4
V= 3749
0.9 %

So approximately 74% of the population would need to be vaccinated to stop the disease from spreading.

14 of 37



SIR Python Implementation

Python Implementation — Setup

o - N N O VUR SR

@ Load our standard scientific python modules numpy, matplotlib, and seaborn.

@ From scipy import integrate for solving differential equations and optimise for curve
fitting/parameter estimation.

@ Load pandas to read CSV data files.

@ Local ipywidgets to control generation of results based on varying parameter values.
J Setup

import numpy as np

import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style('darkgrid")

from scipy import integrate, optimize

import pandas as pd # to deal with CSV files
import ipywidgets as ipw # interactive plots

.

15 of 37



import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style('darkgrid')

from scipy import integrate, optimize

import pandas as pd                 # to deal with CSV files
import ipywidgets as ipw            # interactive plots


SIR Python Implementation

Python Implementation — Define ODE System

2
1 | def rhs_sir(t, state, beta, gamma) :
2 S, I, R=state
3
as
4 gS=S+bI+RS . 5= —BSI/N
5 = —beta * S * da - _ B
6 dI =+ beta*S*I /N - gamma * I de ﬁSI/N g
_ iR __
7 dR = gamma * I ‘d—t = ~I
8
9 return np.array([dS,dI,dR])
10
11
12 | beta=0.4
13 | gamma = 0.1
14
15 | rhs_sir(0®, [1_000,1,0], beta, gamma)

16 of 37



def rhs_sir(t, state, beta, gamma):
    S, I, R = state

    N = S + I + R
    dS = - beta * S * I / N
    dI = + beta * S * I / N - gamma * I
    dR = gamma * I

    return np.array([dS,dI,dR])


beta = 0.4
gamma = 0.1

rhs_sir(0, [1_000,1,0], beta, gamma)


SIR

Python Implementation — Integrate

Python Implementation

[

T [ - N Y S

@ We will use solve_ivp instead of the older
odeint to integrate an ODE.

1000

800

@ Unlike odeint, we only specify the independent

variable span (min, max), and solve_ivp
picks enough points to get solution to
sufficient accuracy.

@ But visually we might want more points.

600

400

200

T_MAX = 200
N =1_000
I0=1

ic = [N-IO, IO, 0]

sol = integrate.solve_ivp(rhs_sir, (0,T_MAX),
t=sol.t
S, I, R=sol.y

—— Susceptible
Infected
—— Recovered

ic, args=(beta, gamma))

75

100

125 150 175 200
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T_MAX = 200
N = 1_000
I0 = 1
ic = [N-I0, I0, 0]


sol = integrate.solve_ivp(rhs_sir, (0,T_MAX), ic, args=(beta, gamma))
t = sol.t
S, I, R = sol.y


SIR Python Implementation

Python Implementation — Integrate with Interpolation

o To get smoother plots, we use optional term 1000
t_eval to specify at which points to generate o0
the state.

@ This parameter will also be useful when e — e
comparing solutions from multiple " — Rocovared

calls to solve_ivp.

200
@ Use np.linspace

IS
J

T_MAX = 200 0
N = 1000 0 % 0 75 10 15 150 175 200
I0=1

ic = [N-IO, IO, 0]

t_eval = np.linspace(0®, T_MAX, 1000)

sol = integrate.solve_ivp(rhs_sir, (0,T_MAX), ic, args=(beta, gamma), t_eval=t_eval)
t=sol.t

S, I, R=sol.y

T [ - N Y S

18 of 37



T_MAX = 200
N = 1_000
I0 = 1
ic = [N-I0, I0, 0]

t_eval = np.linspace(0, T_MAX, 1000)
sol = integrate.solve_ivp(rhs_sir, (0,T_MAX), ic, args=(beta, gamma), t_eval=t_eval)
t = sol.t
S, I, R = sol.y


SIR Python Implementation

Python Implementation — Visualisation

o - NV N O VU SR

5
def update_sir(beta=0.2, gamma=0.1):
sol = integrate.solve_ivp(rhs_sir, (0,T_MAX), ic, args=(beta, gamma), t_eval=t_eval)
t, (S, I,R) =sol.t, sol.y
N = sum(ic)
fig =plt.figure(2, figsize=(12,4))
axs = fig.subplots(l, 2, sharex=0)
10 colors=['blue', 'red', 'green'] Implement a function to draw
11 axs[0].plot(t, S, colors[0], label = "Susceptible") the required plots (
12 axs[0].plot(t, I, colors[1], label = 'Infected’)
13 axs[0] .plot(t, R, colors[2], label = 'Recovered")
14 axs[0].legend()
16 axs[1].stackplot(t, S, I, R, colors=colors)
17 R_® = np.nan if gamma==0 else beta/gamma
18 axs[0].set_title(r"SIR Model ($\beta=%.2f$, $\gamma=%.2£f$) $\Rightarrow$ $R_0=%.2f$"
19 % (beta,gamma,R_0))
20 plt.show() 19 of

B7



def update_sir(beta=0.2, gamma=0.1):

    sol = integrate.solve_ivp(rhs_sir, (0,T_MAX), ic, args=(beta, gamma), t_eval=t_eval)
    t, (S, I, R) = sol.t, sol.y
    N = sum(ic)
    
    fig = plt.figure(2, figsize=(12,4))
    axs = fig.subplots(1, 2, sharex=0)

    colors=['blue', 'red', 'green']
    axs[0].plot(t, S, colors[0], label = "Susceptible")
    axs[0].plot(t, I, colors[1], label = 'Infected')
    axs[0].plot(t, R, colors[2], label = 'Recovered')
    axs[0].legend()
    
    axs[1].stackplot(t, S, I, R, colors=colors)
    R_0 = np.nan if gamma==0 else beta/gamma 
    axs[0].set_title(r"SIR Model ($\beta=%.2f$, $\gamma=%.2f$) $\Rightarrow$ $R_0=%.2f$" 
                     % (beta,gamma,R_0))
    plt.show()


SIR Python Implementation

Python Implementation — Interactive

We can control values of parameters J and  using sliders ...

=

N =1_000

I0=1

ic = [N-I0, IO, 0]

t_eval =np.linspace(0®, T_MAX, 1000)

interactive_plot = ipw.interactive(update_sir,
beta=ipw.FloatSlider(0.0, min=0.0, max=2.0, step=0.01),
gamma=ipw.FloatSlider (0.0, min=0.0, max=2.0, step=0.01),

o - N N O VCR SR

)

output = interactive_plot.children[-1]
output.layout.height = '350px’
interactive_plot

==

)

1000

800

600

400

200

beta 105
gamma L ) 057

SIR Model (8 = 1.05, y=0.57) = Ry = 1.84

—— Susceptible
— Infected
—— Recovered

0 % 50 75 100 125 150 175 200
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N = 1_000
I0 = 1
ic = [N-I0, I0, 0]
t_eval = np.linspace(0, T_MAX, 1000)

interactive_plot = ipw.interactive(update_sir,
    beta=ipw.FloatSlider(0.0, min=0.0, max=2.0, step=0.01),
    gamma=ipw.FloatSlider(0.0, min=0.0, max=2.0, step=0.01),
)
output = interactive_plot.children[-1]
output.layout.height = '350px'
interactive_plot


SIR Python Implementation

Python Implementation — Interactive IT
Colab can be too slow so switch to FloatText widgets ...
7 ~
N = 1_0@@ beta 0.65 S
I0 =1 gamma | 0.35 2
ic = [N-I0, I0, 0] SIR Model (8 = 0.65, y=0.35) = Ro = 1.86
t_eval = np.linspace(®, T_MAX, 1000) 1000 — Susceptible

o - N N O VCR SR

5 = 3

interactive_plot = ipw.interactive(update_sir,
beta=ipw.FloatText(value=0.0,step=0.05),
gamma=ipw.FloatText(value=0.0,step=0.05),

)

output = interactive_plot.children[-1]

output.layout.height = '350px’

interactive_plot

800

600

400

200

— Infected
— Recovered

1a)

100

125

150

175 200

21 of 37



N = 1_000
I0 = 1
ic = [N-I0, I0, 0]
t_eval = np.linspace(0, T_MAX, 1000)

interactive_plot = ipw.interactive(update_sir,
    beta=ipw.FloatText(value=0.0,step=0.05),
    gamma=ipw.FloatText(value=0.0,step=0.05),
)
output = interactive_plot.children[-1]
output.layout.height = '350px'
interactive_plot


SIR Python Implementation

Python Implementation — Parameter Fitting I
SIR epidemic model

1000
800
600

—— susceptible

—— infected

—— recovered
400
200
0

0.0 25 5.0 75 10.0 12.5 15.0 17.5
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SIR Python Implementation

Python Implementation — Parameter Fitting

IT

Load Data ...
8
1 | df = pd.read_csv("data.csv")
2 | df.head ()

Extract ¢ and y values. ..
9 — - " array([[950, 50, O],
; df = pd.read_csv("data.csv'") [949, 51, 0],
3 | t_obs = df.t.values [948, 52, 081,
i Cee
s |y_obs =df[ ['S', 'I', 'R'] ].values E 2;’ i’ g;s%’
° |y-obs [22, ©,978]])

L

t

S IR

0.0.000000 950 50 0
10.018729 949 51 0
2 0.024190 948 52 0
3.0.030419 948 51 1
40.031453 947 52 1
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df = pd.read_csv("data.csv")
df.head()


df = pd.read_csv("data.csv")

t_obs = df.t.values

y_obs = df[ ['S', 'I', 'R'] ].values
y_obs


SIR Python Implementation

Python Implementation — Parameter Fitting I1I

@ Use optimize.minimize instead of optimise.curve_fit as have more control over objective

function.
@ We want to minimise, the sum of squares of differences

2
Z |:ymodel,k - yobs,k:|

k
10
ic = y_obs[0] message: CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR+EPSHCH
success: True
T_MAX = t_obs[-1] status: 0

fun: 754.0829736360038
x: [ 1.923e+00 4.758e-01]
nit: 9

def f£(x):
jac: [-2.246e-01 -1.756e-01]
nfev: 45
= njev: 15
beta Y gamma =X hess_inv: <2x2 LbfgsInvHessProduct with dtype=float64>

sol = integrate.solve_ivp(rhs_sir, (0,T_MAX), ic, args=(beta, gamma), t_eval=t_obs)

return np.linalg.norm(sol.y — y_obs.T)

sol = optimize.minimize(£f, [0.5, 0.5], bounds=((0,3),(0,3)) )
sol

24 of B7




ic = y_obs[0]
T_MAX = t_obs[-1]

def f(x):

    beta, gamma = x

    sol = integrate.solve_ivp(rhs_sir, (0,T_MAX), ic, args=(beta, gamma), t_eval=t_obs)
    return np.linalg.norm(sol.y - y_obs.T)

sol = optimize.minimize(f, [0.5, 0.5], bounds=((0,3),(0,3)) )
sol


SIR

Python Implementation

Python Implementation — Parameter Fitting v
1
sol_ivp = integrate.solve_ivp(rhs_sir, (0,t_obs[-1]), ic, args=sol.x, t_eval=t_obs)
t =sol_ivp.t
1000
plt.plot(t, df.S, '-.', label='Observed — S")
plt.plot(t, df.I, '-.', label='Observed — I') w00
plt.plot(t, df.R, '-.', label='Observed — R")
-= QObserved - S
plt.plot(t, sol_ivp.y[0], label='Model, S') 600 —-- Observed - |
i 1 ' —-- Observed - R
plt.plot(t, sol_ivp.y[1l], label=Model, I') — Model, 5
plt.plot(t, sol_ivp.y[2], label='Model, R") 400 —— Model, |
plt.legend() —— Model, R
plt.show() 200
0
00 25 50 75 00 125 150 175
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sol_ivp = integrate.solve_ivp(rhs_sir, (0,t_obs[-1]), ic, args=sol.x, t_eval=t_obs)
t = sol_ivp.t

plt.plot(t, df.S, '-.', label='Observed - S')
plt.plot(t, df.I, '-.', label='Observed - I')
plt.plot(t, df.R, '-.', label='Observed - R')

plt.plot(t, sol_ivp.y[0], label='Model, S')
plt.plot(t, sol_ivp.y[1], label='Model, I')
plt.plot(t, sol_ivp.y[2], label='Model, R')
plt.legend()
plt.show()


Outline

3. SIS
3.1. Parameter Dependence
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SIS

SIS Model

The SIS model is a compartmental model in epidemiology similar to the SIR model, but it’s
designed to describe diseases where individuals do not acquire long-term immunity after
infection, such as the common cold and the flu.

In the SIS model, individuals move between the Susceptible (S) and Infected (I) states, without

transitioning to a recovered state. After recovery, individuals return to the susceptible pool,
capable of being reinfected.

BN
N
T
Susceptible Infectious
8(7) 1(7)

@ Susceptible individuals can become, rate [3, infected after positive contact with an /
individual. The number of contacts is SI/N.

@ Infected individuals recover, at rate vy, and can be reinfected.

27 of 37



SIS

SIS Model Equations

B SI
N
7
Susceptible Infectious
S(1) 1(2)
\ZI/

@ [ > 0, the rate of contraction of the disease (transmission parameter).

o v > 0, mean recovery rate

" B Assume dis-
£ = —BSI/N + ~I N=S8+1 ease spread is
dl = fast time scale

= BSI/N—~I o

SO can ignore
natural birth-
s/deaths/etc.

dr

28 of 37



Basic Reproduction Number, R

SIS Parameter Dependence

The basic reproduction number, Ry, in the SIS model is calculated similarly to the SIR model:

The value of Ry determines how the disease will spread:

IN

> 1

The infection dies out over time, and eventually, there will be no infec-
tious individuals in the population.

lim I(r) =0

11— 00

The infection will spread and reach an endemic equilibrium, where a
constant proportion of the population remains infected.

lim I(r) = (1 — i) N
t—00 R()
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SIS

Basic Reproduction Number, R

Parameter Dependence

IT

1000

1000

—Ry<1——

Ip=1

SIS Model (8= 0.10, y = 0.30) = Ro =0.33

— Susceptible

— Infected

infects fewer than one person
on average, meaning the dis-
ease will eventually die out.

200

1000

600

1000

Ip = 200

SIS Model (8=0.10, y=0.30) = Ry =0.33

— Susceptible

— Infected

the disease will eventually die
out, even if initial pocket of
infected

200

1000

600

1000

Ip=1

SIS Model (8 =0.30, y=0.10) = Ro =3.00

— Infected

Number of infected trends to-
wards limit of (1 —1/Ry) N.

— Susceplible

>

1000

1000

] —

Ip = 800

SIS Model (8= 0.30, y=0.10) = Ro = 3.00

— Susceplible
— Infected

.

S

0o 25 50

Number of infected trends to-
wards limit of (l — l/R()) N.
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Outline

4. SIRD
4.1. Parameter Dependence
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SIRD

SIRD Model

The SIRD model is an extension of the basic SIR model that incorporates an additional Death (D)
compartment to represent individuals who die from the disease. This modification makes the

SIRD model more realistic for diseases with significant mortality rates, such as COVID-19,
Ebola, and other severe infections.

/3¥ y(1 =)l

N Recovered
7 /—\

Susceptible Infectious R(®)
Se) 1{) Deceased

N b

@ Susceptible individuals can become, rate /3, infected after positive contact with an /
individual. The number of contacts is SI/N, where N = S + [ + R, i.e. no necrophilism.

o Infected individuals can recover and develop immunity to the disease, at rate v and move to
Recovered, or die at a rate 4+ and move to Deceased.
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SIRD

SIRD Model Equations

Recovered
/\ /_\

Susceptible Infectious
S 1) Deceased
yud D(t)
@ (3 > 0, transmission rate.
@ (1 — u) > 0, mean recovery rate
@ vy > 0, mean mortality rate
& = —BSIIN N=S+I+R+D
cj; . =0+ I+R+ Assume dis-
a BSI/N —~1 . N g ease spread is
drR ’y(l _ /L)I dt fast time scale
SO can ignore

dt

@ = yud

N=S+I+R natural birth-
s/deaths/etc.
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SIRD Parameter Dependence

Basic Reproduction Number, R

The basic reproduction number, Ry, in the SIRD model is:

Ry="
gt

The value of Ry indicates how the disease will spread in the early stages of an outbreak:

Each infected individual infects fewer than one person on average,

<l meaning the disease will eventually die out.

Ry

Each infected person, on average, transmits the infection to more than

= one other person, leading to an epidemic (the infection will spread).
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SIRD Parameter Dependence

Effect of varying p. I

=04,~v=02 = Ry=2———
w=20.0 pn=20.5 w=1.0

SIRD Model (8 =0.40, y=0.20 4= 0.00) = Ro = 2.00 SIRD Model (8 =0.40, y = 0.20 11 = 0.50) = Ro=2.00 SIRD Model (8 =0.40, y=0.20 4 =1.00) = Ro = 2.00
1000 1000 1000 S A
— Susceptible —— Susceptible.
— Infected — Infected
800 800 — Recovered 800 — Recovered
—— Deceased —— Deceased

600 — Susceptible 600
— Infected
— Recovered

Deceased

600

200

1000 1000 1000

800 800 800

600

400 400

200 200

Everybody infected recovers, Half of those infected recover Everybody dies. Think zom-
reduces to SIR model. and half die. bies and the Walking Dead
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SIRD Parameter Dependence

Effect of varying p. I

Effect of mortality rateon S, I, and R (3 =0.4 y=0.2).

Susceptible Infected Recovered

1000

800

600

400

200

0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200

S and R behave as expected under varying 1, but why does the infection spike higher and then
decay faster as y increases?
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SIRD

Parameter Dependence

1971 Influenza Outbreaks in Tristan da Cunha
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