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Introduction

Continuous Random Variable

A discrete random variable can only take on a discrete set of values (e.g.,
0,1,2, etc.). We now want to model experiments where the outcome can take
any value in an interval. For example.

The time that elapses between the installation of a new component and
its failure.

The percentage of impurity in a batch of chemicals.

The value of a bitcoin token (1061.47e as of 3/4/17)

While we could approximate the output using discrete random variables it is
easier* and computationaly faster to use continuous random variables.

Definition 1
A random variable is a continuous random variable if it can take any value in
an interval.

*There are a few technical issues to resolve first (next few slides)
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Introduction Moving from Discrete to Continuous

Moving from Discrete to Continuous I
Consider the experiment of reading the time on a 24-hour digital clock.
Assuming that all times are equally likely, then what is the probability that
the clock reads, say 3am?

This is apparently an easy question, and “most” people would say

Pr(3am) = 1/ (24× 60) = 0.0006944444

since there are 24 ∗ 60 minutes in a 24-hour period
But this assumes the clock display accuracy is 1 minute. What happens
if it displays seconds? Then

Pr(3am) = 1/ (24× 60× 60) = 0.00001157407

Or displays hundredths of a second?

Pr(3am) = 1/ (24× 60× 60× 100) = 0.0000001157407

Or display mili-seconds, . . . or pico-seconds, or . . .
The more accurate the measurement the smaller the
probability of reading any particular value.
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Introduction Moving from Discrete to Continuous

Moving from Discrete to Continuous II
In the limit with a clock with perfect display accuracy (where the time
shown smoothy changes) we have

Pr(3am) = 0

To date we have taken that an event has probability zero if it cannot
occur.
But clearly at some point (exactly once a day) the clock will read
“3am”. So we seem to have a contradiction (when dealing with
continuous random variables).

This contradiction can be resolved using Measure theory, but for our
purposes we can:

Interpret Pr(X = x) = 0, the probability of any particular value, as
“arbitrary small” (6= “impossible”).

Always work with cumulative probabilities, i.e., Pr(X ≤ x).
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Introduction Probability Density Function (PDF)

Probability Density Function (PDF)
For a discrete random variable we had Pr(X = x) = f (x) where f (x) was the
probability mass function (PMF). For a continuous random variable:

Pr(X = x) = 0
The probability mass function (PMF) is replaced by its continuous
analogue, the probability density function (PDF)

Definition 2 (Probability Density Function (PDF))
A probability density function (PDF) is any function, f (x), with properties:

1 output is non-negative
0 ≤ f (x) (1)

2 Area under curve is one ∫ ∞
−∞

f (x) dx = 1 (2)

Note we have lost the condition f (x) < 1 so here f (x) is NOT a
probability.
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Introduction Cumulative Distribution Function (CDF)

Cumulative Distribution Function (CDF) I
While the value of a probability density function, f (x), does NOT represent
probabilities, the area under f (x) over an interval a ≤ x ≤ b represents the
probability

Pr(a ≤ X ≤ b)

So we have

a b

PDF f (x)

F(a)

a

F(b)

b

CDF F(x)

0

1

Pr(X ≤ x) = F(x) =
∫ x
−∞ f (s) ds

Pr(a ≤ X ≤ b)

= Pr(X ≤ b)− Pr(X ≤ a) = F(b)− F(a)
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Introduction Cumulative Distribution Function (CDF)

Cumulative Distribution Function (CDF) II

Definition 3 (Cumulative Distribution Function (CDF))
Let X be a continuous random variable with a probability density function
(PDF), f (x) then the cumulative distribution function (CDF) is defined by

F(x) =
∫ x

−∞
f (s) ds

and has properties:

Pr(X ≤ x) = F(x)

Pr(a ≤ X ≤ b) = F(b)− F(a) for any values a and b with a < b.

F(x)→ 0 as x→ −∞
F(x)→ 1 as x→ +∞

With continuous random variables we find probabilities for
intervals of the random variable, not singular specific values.
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Introduction Expected Value and Variance

Mean and Variance of Continuous Random Variables
The mean and variance of continuous random variables can be computed
similar to those for discrete random variables, but for continuous random
variables, we will be integrating over the domain of X rather than summing
over the possible values of X.

Definition 4
Suppose X is a continuous random variable with probability density function
f (x). The expected value or mean of X, denoted is

E[X] = µ =

∫ ∞
−∞

x · f (x) dx

and variance is

Var[X] = σ2 =

∫ ∞
−∞

(x− µ)2 · f (x) dx

And we have Var[X] = E
[
X2
]
−
(

E[X]
)2
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Introduction Expected Value and Variance

Example 5 I

Example 5
The lifetime, in years, of some electronic component is a continuous random
variable with probability density function

f (x) =

{
k
x4 for x ≥ 1
0 for x < 1

Determine:
(a) the value of parameter, k.
(b) the cumulative distribution function,
(c) the probability for the lifetime to exceed 2 years.
(d) the expected value of X
(e) the variance of X

10 of 33



Introduction Expected Value and Variance

Example 5 I

(a), (b), (c)
(d) The expected value is

E[X] =
∫ ∞
−∞

x · f (x) dx =

∫ ∞
1

3
x3 dx =

[
− 3

2x2

]∞
1

=
3
2

(e) Using

E
[
X2
]
=

∫ ∞
−∞

x2 · f (x) dx =

∫ ∞
1

3
x2 dx =

[
− 3

x

]∞
1

= 3

then the variance is

Var[X] = E
[
X2
]
−
(
E[X]

)2
= 3−

(
3/2
)2

= 3/4
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Uniform Probability Distribution

The Uniform Distribution

Definition 6 (Uniform Distribution)
The uniform distribution, is a two-parameter continuous probability
distribution defined by the probability density function (PDF)

f (x) =

{
1

b−a a ≤ x ≤ b
0 otherwise

where parameters

a minimum value

b maximum value

The expected value and variance of a uniform random variable are

E[X] = µ =
a + b

2
Var[X] = σ2 =

(b− a)2

12
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Uniform Probability Distribution

The Uniform Distribution — CDF F(x) =
∫ x
−∞ f (s)ds

The cumulative distribution function of the uniform distribution on (a, b) is

f (x) =

{
1

b−a a ≤ x ≤ b
0 otherwise

=⇒ F(x) =


0 x < a
x−a
b−a a ≤ x ≤ b
1 b < x

1
b−a

a b

PDF

f (x) is not a probability

Pr(X = x) = 0

Pr(X = x) 6= f (x)

since X is a continuous random variable

=⇒ 1

a b

CDF

F(x) is a cumulative probability

Pr(X ≤ x) = F(x)

Pr(a < X ≤ b) = F(b)− F(a)
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Uniform Probability Distribution

Example 7

Example 7
If X is a continuous random variable having the probability density function

f (x) =

{
0.25 0 ≤ x < 4
0 otherwise

(a) Graph the probability density function,
(b) Determine and graph the cumulative distribution function.
(c) Calculate Pr(X < 2).
(d) Calculate Pr(1 < X < 3).
(e) Calculate the mean and variance of X.

Note: that this is just the uniform probability with parameters a = 0 and
b = 4.

15 of 33



Uniform Probability Distribution

Example 7

(a,b)

f (x) =

{
0.25 0 ≤ x < 4
0 otherwise

=⇒ F(x) =


0 x < 0
x
4 0 ≤ x < 4
1 4 < x

0.25

0 4

PDF, f (x)

=⇒ 1

0 4

CDF, F(X)

(c) Pr(X < 2) = F(2) = 0.5
(d) Pr(1 < X < 30) = F(30)− F(1) = 1− 1

4 = 0.75

(e) E[X] = 0+4
2 = 2, Var[X] = (4−0)2

12 = 0.75
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Exponential Probability Distribution

The Exponential Distribution
The Poisson distribution was concerned with the number of (rare) events per
unit time interval. The exponential distribution, is concerned with the length
of time between events.

Definition 8 (Exponential Distribution)
The exponential distribution, is a one-parameter continuous probability
distribution defined by the probability density function (PDF)

f (x) =

{
λe−λx x ≥ 0
0 otherwise

where parameter

λ is the mean number of independent events per unit time. λ > 0

The expected value and variance of a exponential random variable are

E[X] = µ =
1
λ

Var[X] = σ2 =
1
λ2

18 of 33
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Exponential Probability Distribution

Exponential Distribution — CDF F(x) =
∫ x
−∞ f (s)ds

The cumulative distribution function of the exponential distribution is

f (x) =

{
λe−λx 0 ≤ x
0 otherwise

=⇒ F(x) =

{
1− e−λx 0 ≤ x
0 otherwise

λ

PDF, f (x)

f (x) is not a probability

Pr(X = x) = 0

Pr(X = x) 6= f (x)

since X is a continuous random variable

=⇒ 1

CDF, F(x)

F(x) is a cumulative probability

Pr(X ≤ x) = F(x)

Pr(a < X ≤ b) = F(b)− F(a)
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Exponential Probability Distribution

Example 9

Example 9
Service times for customers at a library information desk can be modelled
by an exponential distribution with a mean service time of 5 minutes.
What is the probability that a customer service time will

(a) take longer than 10 minutes?
(b) take between 5 and 15 minutes?

MODEL Exponential, λ = 1/5 = 0.2 since µ = 1/λ

=⇒ CDF F(x) = 1− e−0.2x

(a) . . . take longer than 10 minutes†

Pr(X ≥ 10) = 1− Pr(X ≤ 10) = 1− F(10) = 13.533%
(b) . . . take between 5 and 15 minutes

Pr(5 ≤ X ≤ 15) = F(15)− F(5) = 0.950− 0.632 = 31.8%

†Note: Since X is continuous Pr(X ≥ 10) = Pr(X > 10) + Pr(X = 10) = Pr(X > 10)
20 of 33
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(b) take between 5 and 15 minutes?

MODEL Exponential, λ = 1/5 = 0.2 since µ = 1/λ

=⇒ CDF F(x) = 1− e−0.2x

(a) . . . take longer than 10 minutes†

Pr(X ≥ 10) = 1− Pr(X ≤ 10) = 1− F(10) = 13.533%
(b) . . . take between 5 and 15 minutes

Pr(5 ≤ X ≤ 15) = F(15)− F(5) = 0.950− 0.632 = 31.8%

†Note: Since X is continuous Pr(X ≥ 10) = Pr(X > 10) + Pr(X = 10) = Pr(X > 10)
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Exponential Probability Distribution

Example 10

Example 10
An industrial plant with 2000 employees has a mean number of accidents
per week equal to λ = 0.4 and the number of accidents follows a Poisson
distribution. What is the probability that

(a) there are between 2 and 4 (inclusive) accidents in a week?
(b) the time between accidents is more than 2 and less than 4 weeks?

MODEL: Poisson (number of accidents) / Exponential (time between accidents),
λ = 4 accidents per week

(a) between 2 and 4 accidents. . . ? number of accidents =⇒ Poisson f (x) = λxe−λ

x!

Pr(2 ≤ X ≤ 4) = Pr(X = 2 OR X = 3 OR X = 4)

= f (2) + f (3) + f (4) = 0.5372587

(b) the time between accidents . . . ? time between =⇒ Exponential F(x) = 1− e−λx

Pr(2 ≤ X ≤ 4) = F(4)− F(2) = 0.2386513
21 of 33
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Normal Probability Distribution

The Normal Distribution

Definition 11 (Normal Distribution)
The normal distribution, is a two-parameter continuous probability
distribution defined by the probability density function (PDF)

f (x) =
1

σ
√

2π
e−(x−µ)

2/(2σ2)

where parameters

µ is the mean −∞ < µ <∞
σ is the standard deviation 0 < σ <∞

The expected value and variance of a exponential random variable are

E[X] = µ Var[X] = σ2

We write X ∼ N (µ, σ2) to indicate that the random variable, X, follows
the normal distribution with mean, µ, and variance, σ2.
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Normal Probability Distribution

Graph of the Probability Density Function (PDF)

The shape of the normal probability density function is a symmetric
bell-shaped curve centred on the mean µ.
If X ∼ N (µ, σ2) then the area under the normal probability density
function to the left of x is the cumulative probability

Pr(X ≤ x)

µ

x

PDF f (x)
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Normal Probability Distribution

Standard Normal Distribution

Definition 12 (Standard Normal Distribution)
Let Z be a normal random variable with mean µ = 0 and variance σ2 = 1,
that is, Z ∼ N (0, 1). We say that Z follows the standard normal distribution.

We can obtain probabilities for any normally distributed random variable by

1 Convert the random
variable to the standard
normally distributed
random variable Z using
the transformation

Z =
X − µ
σ

2 Use the standard normal
distribution tables (page
20 and 21).
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Area under the standard normal curve (continued) 
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Normal Probability Distribution

Using Standard Normal Distribution Tables I
The standard normal distribution table gives the values of F(z) =
Pr(Z ≤ z) for non-negative values of z.
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= 0.8264
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Normal Probability Distribution

Using Standard Normal Distribution Tables II
To use the standard normal distribution table for negative z, use
the symmetry property and the total law of probability

Pr(Z ≤ −z) = 1− Pr(Z ≤ z)

0

−z

Pr(Z ≤ −z)

z

Pr(Z ≥ z)

Pr(Z ≤ z)

PDF f (x)

For example

Pr(Z ≤ −0.94)

= Pr(Z ≥ 0.94)

= 1− Pr(Z ≤ 0.94)

= 0.1736
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Normal Probability Distribution

Example 13

Example 13 (Computing Standard Normal Probabilities)
Find the area under the standard normal curve that lies

(a) to the left of z = 2.5.
(b) to the left of z = −1.55.
(c) between z = 0 and z = 0.78.
(d) between z = −0.33 and z = 0.66.
(a) to the left of z = 2.5

Pr(Z ≤ 2.5) = 0.9948
(b) to the left of z = −1.55

Pr(Z ≤ −1.55) = 1− Pr(Z ≤ 1.55) = 0.0605
(c) between z = 0 and z = 0.78

Pr(Z ≤ 0.78)− Pr(Z ≤ 0) = 0.7823− 0.5 = 0.2823
(d) between z = −0.33 and z = 0.66

Pr(Z ≤ 0.66)− Pr(Z ≤ −0.33) = 0.7453− (1− Pr(Z ≤ 0.33))

= 0.7453− 0.3707 = 0.3746
28 of 33
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Example 14 (Converting to Standard Normal)
A random variable has a normal distribution with µ = 69 and σ = 5.1.
What are the probabilities that the random variable will take a value

(a) less than 74.1
(b) greater than 63.1
(c) between 65 and 72.3

Z =
X − µ
σ

(a) less than 74.1

Pr(X ≤ 74.1) = Pr

(
Z ≤ 74.1− 69

5.1

)
= Pr (Z ≤ 1) = 0.8413

(b) greater than 63.1

Pr(X ≥ 63.1) = Pr (Z ≥ −1.16) = 0.8770

(c) between 65 and 72.3

Pr(65 ≤ X ≤ 72.3) = Pr(−0.78 ≤ Z ≤ 0.64) = 0.5212
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Example 15
A very large group of students obtains test scores that are normally
distributed with mean 60 and standard deviation 15. Find the cutoff point for
the top 10% of all students for the test scores.

Here we are using the tables in reverse . . . we have a probability (0.10) and
want to find the particular value for z on the standard normal curves, and
then find the corresponding particular value for x on the normal curve
(corresponding to µ = 60 and σ = 15).

standard normal probability→ z

If Pr(Z ≤ z) = 0.90 then z = 1.28

since z = 1.28 has probability value closest to 0.9.
standard normal N (0, 1)→ normal N (60, 152)

z = 1.28 → x = (1.28)(15) + 50 = 79.2

Z =
X − µ
σ
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Example 16
A random variable has a normal distribution with variance 100. Find its
mean if the probability that it will take on a value less than 77.5 is 0.8264.

From the problem statement, we know

Pr(X ≤ 77.5) = 0.8264 = Pr(Z ≤ z)

We can determine z using the standard normal tables (in reverse)

Pr(Z ≤ z) = 0.8264 =⇒ z = 0.94

The relationship between random variables X ∼ N (µ, 100) and Z
means

Z =
X − µ
σ

⇐⇒ 0.94 =
77.5− µ

10
=⇒ µ = 68.1
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Normal Distribution Approximation to Binomial

Normal distribution can be used to approximate the binomial distribution.
This approximation allows to speed up the computation of probabilities
when the number of trials is large:

Recall, that the binomial has

E[X] = µ = np and Var[X] = σ2 = np(1− p)

If the number of trials (n) is large and probability of success, p is close
to 0.5, so that np(1− p) > 5, then the distribution of the random
variable

Z =
X − µ
σ

=
X − np√
np(1− p)

is approximately a standard normal distribution.
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Example 17
An election forecaster has obtained a random sample of 900 voters in which
460 indicate that they will vote for Candidate A. Assuming that there are
only two candidates, what is the probability of Candidate A winning the
election?
What is the normal approximation to this probability?

MODEL Binomial, ‘success’ = ‘vote for Candidate A’
n = number of voters n = 900
p = probability of ‘success’ p = 460/900 = 0.511

Pr(winning election) = Pr(X ≥ 451) = 73.68%
MODEL Normal

Mean µ = np = 500
Variance σ2 = np(1− p) = 224.89 np(1− p) > 5 ? 4

Pr(winning election) = Pr(X ≥ 451) = Pr

(
Z ≥ 451− 460√

224.89

)
= 72.59%
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