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Introduction

Continuous Random Variable

A discrete random variable can only take on a discrete set of values (e.g.,

0,1,2, etc.). We now want to model experiments where the outcome can take
any value in an interval. For example.

@ The time that elapses between the installation of a new component and
its failure.

@ The percentage of impurity in a batch of chemicals.

@ The value of a bitcoin token (1061.47€ as of 3/4/17)
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Introduction

Continuous Random Variable

A discrete random variable can only take on a discrete set of values (e.g.,

0,1,2, etc.). We now want to model experiments where the outcome can take
any value in an interval. For example.

@ The time that elapses between the installation of a new component and
its failure.

@ The percentage of impurity in a batch of chemicals.
@ The value of a bitcoin token (1061.47€ as of 3/4/17)

While we could approximate the output using discrete random variables it is
easier” and computationaly faster to use continuous random variables.

A random variable is a continuous random variable if it can take any value in
an interval.

“There are a few technical issues to resolve first (next few slides)
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Introduction Moving from Discrete to Continuous

Moving from Discrete to Continuous

Consider the experiment of reading the time on a 24-hour digital clock.

Assuming that all times are equally likely, then what is the probability that
the clock reads, say 3am?
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Moving from Discrete to Continuous

Consider the experiment of reading the time on a 24-hour digital clock.

Assuming that all times are equally likely, then what is the probability that
the clock reads, say 3am?

@ This is apparently an easy question, and “most” people would say

Pr(3am) = 1/ (24 x 60) = 0.0006944444

since there are 24 « 60 minutes in a 24-hour period
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Introduction Moving from Discrete to Continuous

Moving from Discrete to Continuous

Consider the experiment of reading the time on a 24-hour digital clock.

Assuming that all times are equally likely, then what is the probability that
the clock reads, say 3am?

@ This is apparently an easy question, and “most” people would say
Pr(3am) = 1/ (24 x 60) = 0.0006944444

since there are 24 « 60 minutes in a 24-hour period

@ But this assumes the clock display accuracy is 1 minute. What happens
if it displays seconds? Then

Pr(3am) = 1/ (24 x 60 x 60) = 0.00001157407
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Introduction Moving from Discrete to Continuous

Moving from Discrete to Continuous

Consider the experiment of reading the time on a 24-hour digital clock.

Assuming that all times are equally likely, then what is the probability that
the clock reads, say 3am?

@ This is apparently an easy question, and “most” people would say
Pr(3am) = 1/ (24 x 60) = 0.0006944444

since there are 24 « 60 minutes in a 24-hour period

@ But this assumes the clock display accuracy is 1 minute. What happens
if it displays seconds? Then

Pr(3am) = 1/ (24 x 60 x 60) = 0.00001157407
@ Or displays hundredths of a second?

Pr(3am) = 1/ (24 x 60 x 60 x 100) = 0.0000001157407
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Introduction Moving from Discrete to Continuous

Moving from Discrete to Continuous

Consider the experiment of reading the time on a 24-hour digital clock.

Assuming that all times are equally likely, then what is the probability that
the clock reads, say 3am?

@ This is apparently an easy question, and “most” people would say
Pr(3am) = 1/ (24 x 60) = 0.0006944444

since there are 24 « 60 minutes in a 24-hour period

@ But this assumes the clock display accuracy is 1 minute. What happens
if it displays seconds? Then

Pr(3am) = 1/ (24 x 60 x 60) = 0.00001157407
@ Or displays hundredths of a second?

Pr(3am) = 1/ (24 x 60 x 60 x 100) = 0.0000001157407

@ Or display mili-seconds, ... or pico-seconds, or ...

[The more accurate the measurement the smaller the }

probability of reading any particular value.
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Introduction Moving from Discrete to Continuous

Moving from Discrete to Continuous II

In the limit with a clock with perfect display accuracy (where the time
shown smoothy changes) we have

Pr(3am) =0
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Introduction Moving from Discrete to Continuous

Moving from Discrete to Continuous

IT

In the limit with a clock with perfect display accuracy (where the time
shown smoothy changes) we have

Pr(3am) =0

@ To date we have taken that an event has probability zero if it cannot
occur.

@ But clearly at some point (exactly once a day) the clock will read
“3am”. So we seem to have a contradiction (when dealing with
continuous random variables).

5 0f 33



Introduction Moving from Discrete to Continuous

Moving from Discrete to Continuous

IT

In the limit with a clock with perfect display accuracy (where the time
shown smoothy changes) we have

Pr(3am) =0

@ To date we have taken that an event has probability zero if it cannot
occur.

@ But clearly at some point (exactly once a day) the clock will read
“3am”. So we seem to have a contradiction (when dealing with
continuous random variables).

This contradiction can be resolved using Measure theory, but for our
purposes we can:

@ Interpret Pr(X = x) = 0, the probability of any particular value, as
“arbitrary small” (# “impossible”).

@ Always work with cumulative probabilities, i.e., Pr(X < x).
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Introduction Probability Density Function (PDF)

Probability Density Function (PDF)

For a discrete random variable we had Pr(X = x) = f(x) where f(x) was the
probability mass function (PMF). For a continuous random variable:
e Pr(X=x)=0
@ The probability mass function (PMF) is replaced by its continuous
analogue, the probability density function (PDF)

@ Note we have lost the condition f(x) < 1 so here f(x) is NOT a
probability.
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Introduction Probability Density Function (PDF)

Probability Density Function (PDF)

For a discrete random variable we had Pr(X = x) = f(x) where f(x) was the
probability mass function (PMF). For a continuous random variable:
e PriX=x)=0

@ The probability mass function (PMF) is replaced by its continuous
analogue, the probability density function (PDF)
Definition 2 (Probability Density Function (PDF))

A probability density function (PDF) is any function, f(x), with properties:
@ output is non-negative

0 <f(x) (1)

© Area under curve is one

/Oof(x) dx =1 (2)

V.

@ Note we have lost the condition f(x) < 1 so here f(x) is NOT a
probability.
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Introduction Cumulative Distribution Function (CDF)

Cumulative Distribution Function (CDF)

While the value of a probability density function, f(x), does NOT represent

probabilities, the area under f(x) over an interval a < x < b represents the
probability

Pr(a<X <b)

7 of 33
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Cumulative Distribution Function (CDF)

While the value of a probability density function, f(x), does NOT represent
probabilities, the area under f(x) over an interval a < x < b represents the
probability

Pr(a<X <b)

So we have

PDF f(x)
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Introduction Cumulative Distribution Function (CDF)

Cumulative Distribution Function (CDF)

While the value of a probability density function, f(x), does NOT represent

probabilities, the area under f(x) over an interval a < x < b represents the
probability

Pr(a<X <b)
So we have
Pr(X <x) = F(x)
/\
PDF f(x)
F(b)
N Fla)
: ! 0
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Introduction Cumulative Distribution Function (CDF)

Cumulative Distribution Function (CDF)

While the value of a probability density function, f(x), does NOT represent

probabilities, the area under f(x) over an interval a < x < b represents the
probability

Pr(a<X <b)
So we have
Pr(X <x) = F(x)
/\
PDF f(x)
F(b)
N Fla)
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Introduction Cumulative Distribution Function (CDF)

Cumulative Distribution Function (CDF) II

Definition 3 (Cumulative Distribution Function (CDF))

Let X be a continuous random variable with a probability density function
(PDF), f(x) then the cumulative distribution function (CDF) is defined by

F(x) = /_ ; £(s) ds

and has properties:
o Pr(X <x)=F(x)
@ Pr(a <X <b)=F(b) — F(a) for any values a and b with a < b.
@ F(x) > 0asx — —o0

® F(x) > lasx — 400

With continuous random variables we find probabilities for
intervals of the random variable, not singular specific values.
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Introduction Expected Value and Variance

Mean and Variance of Continuous Random Variables

The mean and variance of continuous random variables can be computed
similar to those for discrete random variables, but for continuous random

variables, we will be integrating over the domain of X rather than summing
over the possible values of X.
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Introduction Expected Value and Variance

Mean and Variance of Continuous Random Variables

The mean and variance of continuous random variables can be computed
similar to those for discrete random variables, but for continuous random

variables, we will be integrating over the domain of X rather than summing
over the possible values of X.

Suppose X is a continuous random variable with probability density function
f(x). The expected value or mean of X, denoted is

E[X] = i = /'OO x-fx) dx

— o
and variance is

Var[X] = 02 = /OO (x — p)? - f(x) dx

o0

And we have Var[X] = E[Xz} = (E[X] )2
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Introduction Expected Value and Variance

Example 5

Example 5

The lifetime, in years, of some electronic component is a continuous random

variable with probability density function
k
=< forx>1
o) =4~
0 forx<1

Determine:
the value of parameter, k.

the cumulative distribution function,

the expected value of X

© 6 6 6 6

the variance of X

the probability for the lifetime to exceed 2 years.
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Introduction Expected Value and Variance

Example 5

(a), (b), (c)
@ The expected value is

(e}

E[X]:/_oox-f(x)dx:/lm;dx: [-sz]mzi

@ Using

E[Xﬂ :/sz-f(x)dx:/loo3dx: [—3]0023

then the variance is

Var[X] = E[X } — (EX])*=3-(3/2)* =3/4
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Uniform Probability Distribution

The Uniform Distribution

Definition 6 (Uniform Distribution)

The uniform distribution, is a two-parameter continuous probability
distribution defined by the probability density function (PDF)

1
) = a<x<b
f<x>{0

otherwise
where parameters
@ a minimum value

@ b maximum value
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Uniform Probability Distribution

The Uniform Distribution

Definition 6 (Uniform Distribution)

The uniform distribution, is a two-parameter continuous probability
distribution defined by the probability density function (PDF)

1
)= a<x<b
f<x>{0

otherwise
where parameters
@ a minimum value

@ b maximum value

@ The expected value and variance of a uniform random variable are

a+b b — a)?
BX] = p == Var[X] = 0% = (12)
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Uniform Probability Distribution

The Uniform Distribution — CDF

F(x) = [7f(s)ds

The cumulative distribution function of the uniform distribution on (a, b) is

L <x<b
x) = b—a a= —
U {0 otherwise
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Uniform Probability Distribution

The Uniform Distribution — CDF F(x) = ["_f(s)ds

The cumulative distribution function of the uniform distribution on (a, b) is

1 O x<a
fo)= {pma @SxSh — F)={x¢ 4<x<b
x: _x: P
0 otherwise bma 4=T=
1 b<x
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The Uniform Distribution — CDF

Uniform Probability Distribution

F(x) = [7f(s)ds

The cumulative distribution function of the uniform distribution on (a, b) is

i 0 x<a
fy=drma asxsbo o py s p<a<h
0 otherwise b=a -
1 b<x
PDF CDF
l _— =
b—a
e 1] +-=-===-=--
|
/
a p a

f(x) is not a probability
Pr(X=x)=0
Pr(X = %) # £(x

F(x) is a cumulative probability

Pr(X <x) = F(x)

Pr(a < X <b) = F(b) — F(a)

| since X is a continuous random variable |
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Uniform Probability Distribution

Example 7

Example 7

If X is a continuous random variable having the probability density function

025 0<x<4
(x) = .
0 otherwise
Graph the probability density function,
Determine and graph the cumulative distribution function.
Calculate Pr(X < 2).
Calculate Pr(1 < X < 3).

Calculate the mean and variance of X.

© 6 6 6 6

Note: that this is just the uniform probability with parameters ¢ = 0 and
b=4.
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Uniform Probability Distribution

Example 7

(a,b)

025 0<x<4
_x fr—
F) {O otherwise

PDF, /(x)

0.25
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Uniform Probability Distribution

Example 7
(a,b)
025 0<x<4 0 =0
. X
f(x):{ - = Fx)=¢3 0<x<4
0 otherwise
1 4<x
PDF, f(x) CDF, F(X)
— 1 o~
0.25 PagaEs
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Uniform Probability Distribution

Example 7
(a,b)

025 0<x<4 0 x=0

. X
flx) = - = Fx)=4% 0<x<4
0 otherwise
1 4<x
PDF, f(x) CDF, F(X)
= 1 o
0.25 PagaEs
0 4 0 4

@ Pr(X<2)=F((2)=05
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Uniform Probability Distribution

Example 7
(a,b)

025 0<x<4 0 x=0

. X
flx) = - = Fx)=4% 0<x<4
0 otherwise
1 4<x
PDF, f(x) CDF, F(X)
= 1 o
0.25 PagaEs
0 4 0 4

@ Pr(X<2)=F(2)=05
@ Pr(1<X<30)=F(30)—F(1)=1-

ENE
Il
o
23
Q
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Uniform Probability Distribution

Example 7
(a,b)
025 0<x<4 0 <0
) X
flx) = - = Fix)=q% 0<x<4
0 otherwise
1 4<x
PDF, f(x) CDF, F(X)
= =
0.25 PagaEs
0 4 0 4
@ Pr(X<2)=F(2)=05
@ Pr(l<X<30)=F30)—F(1)=1—7=0.75

1
1
Q@ EX]=%%=2, Var[X] = “55- =0.75
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Exponential Probability Distribution

The Exponential Distribution

The Poisson distribution was concerned with the number of (rare) events per

unit time interval. The exponential distribution, is concerned with the length
of time between events.

Definition 8 (Exponential Distribution)

The exponential distribution, is a one-parameter continuous probability
distribution defined by the probability density function (PDF)

ei)\x X
£lx) = {A =Y

0 otherwise

where parameter

@ )\ is the mean number of independent events per unit time. A>0
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Exponential Probability Distribution

The Exponential Distribution

The Poisson distribution was concerned with the number of (rare) events per

unit time interval. The exponential distribution, is concerned with the length
of time between events.

Definition 8 (Exponential Distribution)

The exponential distribution, is a one-parameter continuous probability
distribution defined by the probability density function (PDF)

e ™ x>0
flx) = .
0 otherwise

where parameter

@ )\ is the mean number of independent events per unit time. A>0

V.

@ The expected value and variance of a exponential random variable are
1 1

EX] =p= 5 Var[X] = 0% = 2
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Exponential Probability Distribution

Exponential Distribution — CDF

F(x) = [7f(s)ds

The cumulative distribution function of the exponential distribution is

—Ax
F) = {)\e 0<x

0 otherwise

PDF, / (x)
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Exponential Probability Distribution

. . . . X
Exponential Distribution — CDF F(x) = ["_f(s)ds
The cumulative distribution function of the exponential distribution is

Ae™™ 0 <x l—e™ 0<ux
fx) = : - F(x) = :
0 otherwise 0 otherwise

PDF, /()

A
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Exponential Probability Distribution

. . . . X
Exponential Distribution — CDF F(x) = ["_f(s)ds
The cumulative distribution function of the exponential distribution is

Ae™™ 0 <x l—e™ 0<ux
fx) = : = F(x) = :
0 otherwise 0 otherwise

PDF, /(x)

A
— 1
f(x) is not a probability F(x) is a cumulative probability
Pr(X=x)=0 Pr(X <x)=F(x)
Pr(X =x) #f(x) Pr(a <X <b) =F(b) — F(a)

| since X is a continuous random variable |
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Exponential Probability Distribution

Example 9

Example 9

Service times for customers at a library information desk can be modelled
by an exponential distribution with a mean service time of 5 minutes.
What is the probability that a customer service time will

@ take longer than 10 minutes?

@ take between 5 and 15 minutes?
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Exponential Probability Distribution

Example 9

Example 9

Service times for customers at a library information desk can be modelled
by an exponential distribution with a mean service time of 5 minutes.
What is the probability that a customer service time will

@ take longer than 10 minutes?

@ take between 5 and 15 minutes? )
MODEL Exponential, A = 1/5 = 0.2 since ;1 = 1/A
—> CDF Flx)=1—e 0%

"Note: Since X is continuous Pr(X > 10) = Pr(X > 10) + Pr¥—163 = Pr(X > 10)
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Exponential Probability Distribution

Example 9

Example 9

Service times for customers at a library information desk can be modelled
by an exponential distribution with a mean service time of 5 minutes.
What is the probability that a customer service time will

@ take longer than 10 minutes?

@ take between 5 and 15 minutes? )

MODEL Exponential, A = 1/5 = 0.2 since ;1 = 1/A
—> CDF Flx)=1—e 0%

Q@ ... take longer than 10 minutes’
Pr(X > 10) = 1 — Pr(X < 10) = 1 — F(10) = 13.533%

"Note: Since X is continuous Pr(X > 10) = Pr(X > 10) + Pr¥—163 = Pr(X > 10)
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Exponential Probability Distribution

Example 9

Example 9

Service times for customers at a library information desk can be modelled
by an exponential distribution with a mean service time of 5 minutes.
What is the probability that a customer service time will

@ take longer than 10 minutes?

@ take between 5 and 15 minutes? )

MODEL Exponential, A = 1/5 = 0.2 since ;1 = 1/A
—> CDF Flx)=1—e 0%
Q@ ... take longer than 10 minutes’

Pr(X >10)=1—-Pr(X <10) =1— F(10) = 13.533%

Q@ ... take between 5 and 15 minutes
Pr(5 < X < 15) = F(15) — F(5) = 0.950 — 0.632 = 31.8%

"Note: Since X is continuous Pr(X > 10) = Pr(X > 10) + Pr¥—163 = Pr(X > 10)
20 of 33



Exponential Probability Distribution

Example 10

Example 10

An industrial plant with 2000 employees has a mean number of accidents

per week equal to A = 0.4 and the number of accidents follows a Poisson
distribution. What is the probability that

@ there are between 2 and 4 (inclusive) accidents in a week?

@ the time between accidents is more than 2 and less than 4 weeks?
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Exponential Probability Distribution

Example 10

Example 10

An industrial plant with 2000 employees has a mean number of accidents

per week equal to A = 0.4 and the number of accidents follows a Poisson
distribution. What is the probability that

@ there are between 2 and 4 (inclusive) accidents in a week?

@ the time between accidents is more than 2 and less than 4 weeks?

MODEL: Poisson (number of accidents) / Exponential (time between accidents),
@ )\ = 4 accidents per week
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Exponential Probability Distribution

Example 10

Example 10

An industrial plant with 2000 employees has a mean number of accidents

per week equal to A = 0.4 and the number of accidents follows a Poisson
distribution. What is the probability that

@ there are between 2 and 4 (inclusive) accidents in a week?

@ the time between accidents is more than 2 and less than 4 weeks?

MODEL: Poisson (number of accidents) / Exponential (time between accidents),
@ )\ = 4 accidents per week

@ berween 2 and 4 accidents. .. ?

. X ,—A
number of accidents = Poisson | f(x) = >

Pr2<X<4)=Pr(X=20RX =30RX =4)
=f(2) +f(3) +f(4) = 0.5372587
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Exponential Probability Distribution

Example 10

Example 10

An industrial plant with 2000 employees has a mean number of accidents

per week equal to A = 0.4 and the number of accidents follows a Poisson
distribution. What is the probability that

@ there are between 2 and 4 (inclusive) accidents in a week?

@ the time between accidents is more than 2 and less than 4 weeks?

MODEL: Poisson (number of accidents) / Exponential (time between accidents),
@ )\ = 4 accidents per week

X x,—A
@ between 2 and 4 accidents. .. ? number of accidents = Poisson | f(x) = 2 <

Pr2<X<4)=Pr(X=20RX=30RX =4)
= £(2) +£(3) + f(4) = 0.5372587
@ the time between accidents ... ? time between —> Exponential m
Pr(2 < X < 4) = F(4) — F(2) = 0.2386513

21 of 33
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Normal Probability Distribution

The Normal Distribution

Definition 11 (Normal Distribution)

The normal distribution, is a two-parameter continuous probability
distribution defined by the probability density function (PDF)

1 2 2

— = a—(x=p)?/(20?)
= e
f(x) T

where parameters
@ /i is the mean

—00 < 4 < 00
@ o is the standard deviation

0<O’<OOJ
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Normal Probability Distribution

The Normal Distribution

Definition 11 (Normal Distribution)

The normal distribution, is a two-parameter continuous probability
distribution defined by the probability density function (PDF)
1 2 2
— o~ (=w?/(207)
5)) = &
fo)=——

where parameters

@ /i is the mean —00 < [ < 00

@ o is the standard deviation 0<o< o )

@ The expected value and variance of a exponential random variable are

EX] = p Var[X] = o°

@ We write X ~ N (p1, o%) to indicate that the random variable, X, follows
the normal distribution with mean, 1, and variance, o
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Normal Probability Distribution

Graph of the Probability Density Function (PDF)

@ The shape of the normal probability density function is a symmetric
bell-shaped curve centred on the mean /.
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Normal Probability Distribution

Graph of the Probability Density Function (PDF)

@ The shape of the normal probability density function is a symmetric
bell-shaped curve centred on the mean /.

o If X ~ N (j, 0%) then the area under the normal probability density
function to the left of x is the cumulative probability

Pr(X <x)
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Normal Probability Distribution

Standard Normal Distribution

Definition 12 (Standard Normal Distribution)

Let Z be a normal random variable with mean ;2 = 0 and variance o> = 1,
that is, Z ~ A/ (0, 1). We say that Z follows the standard normal distribution.

We can obtain probabilities for any normally distributed random variable by

@ Convert the random
variable to the standard eza)e e e LN
normally distributed S Tow [owr sm om | oo 0w om | ow ow om

00 |05000 | 5040 5080 5120 | 5160 5199 5239 | S7e 5319 5350

. . 01 | 05398 | 5438 5478 5517 5557 5596 5636 5675 5714 5753
random variable Z using o o] s Mo | e e | e o o
wloan|an wm oW an o lam wmowm

the transformation o5 [osots | ess0 e 7ot9 | 7o 7oss  7izs | Tier  Tieo  7a2a

06 | 07257 | 7201 734 7357 | 7389 7422 7454 | 7486 7517 7549

o7 omsso | Ten  Tea Ters | Tod T Tred | e 7 7
or [oreer | Teo Teme Teer | s ams wst | are ee e
oo oo | sre sa s | s oo s | g0 s s
X — " vo lowrs| wos st ses | wos et wse | e e st

7 —

o Page 20

@ Use the standard normal
distribution tables (page : o e wen | v e v [ ew om
11| 08643 | 8665 8686 8708 8729 8749 8770 8790 8810 8830
20 and 21) 15 ooz | oo coss cooz | o080 o115 o131 | o7 owe o177

1o [oos2| oios s  aasa | oaes os0s o5t | oss  osss 955 | 25 of 33
o




Using Standard Normal Distribution Tables

Normal Probability Distribution

The standard normal distribution table gives the values of F(z) =
Pr(Z < z) for non-negative values of z.

Area under the standard normal curve

1
1 ER
P(z<z ):7‘[ e? dz
' V2 J
' + + + ——
32 0 12
z, 0-00 0-01 0-02 0-03 0-04 0-05 0-06 0-07 0-08 0-09
0-0 | 0-5000 | 5040 5080 5120 5160 5199 5239 5279 5319 5359
01 0-5398 | 5438 5478 5517 5557 5596 5636 5675 5714 5753
0-2 | 0-5793 | 5832 5871 5910 5948 5987 6026 6064 6103 6141
0-3 | 06179 | 6217 6255 6293 6331 6368 6406 6443 6480 6517
0-4 | 06554 | 6591 6628 6664 6700 6736 6772 6808 6844 6879
0-5 | 0-6915 | 6950 6985 7019 7054 7088 7123 7157 7190 7224
06 | 07257 | 7291 7324 7357 7389 7422 7454 7486 7517 7549
0-7 | 07580 | 7611 7642 7673 7704 7734 7764 7794 7823 7852
0-8 | 0-7881 7910 7939 7967 7995 8023 8051 8078 8106 8133
09 | 08159 | 8186 8212 8238 8264 8289 8315 8340 8365 8389
1-0 | 0-8413 | 8438 8461 8485 8508 8531 8554 8577 8599 8621
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Using Standard Normal Distribution Tables

Normal Probability Distribution

The standard normal distribution table gives the values of F(z) =
Pr(Z < z) for non-negative values of z.

For example Pr(Z < 0.94)

Area under the standard normal curve

1
1 ER
P(z<z ):7‘[ e? dz
' V2 J
' + + + ——
32 0 12
z, 0-00 0-01 0-02 0-03 0-04 0-05 0-06 0-07 0-08 0-09
0-0 | 0-5000 | 5040 5080 5120 5160 5199 5239 5279 5319 5359
01 0-5398 | 5438 5478 5517 5557 5596 5636 5675 5714 5753
0-2 | 0-5793 | 5832 5871 5910 5948 5987 6026 6064 6103 6141
0-3 | 06179 | 6217 6255 6293 6331 6368 6406 6443 6480 6517
0-4 | 06554 | 6591 6628 6664 6700 6736 6772 6808 6844 6879
0-5 | 0-6915 | 6950 6985 7019 7054 7088 7123 7157 7190 7224
06 | 07257 | 7291 7324 7357 7389 7422 7454 7486 7517 7549
0-7 | 07580 | 7611 7642 7673 7704 7734 7764 7794 7823 7852
0-8 | 0-7881 7910 7939 7967 7995 8023 8051 8078 8106 8133
09 | 08159 | 8186 8212 8238 8264 8289 8315 8340 8365 8389
1-0 | 0-8413 | 8438 8461 8485 8508 8531 8554 8577 8599 8621
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Normal Probability Distribution

Using Standard Normal Distribution Tables

The standard normal distribution table gives the values of F(z) =
Pr(Z < z) for non-negative values of z.

For example Pr(Z <

eV )

Area under the standard normpl curve

12

P(ZSZI):ﬁJ- e? dz

0-02 003 | 004 005 006 | 007 0-08 009
5080 5120 | 5160 5199 5239 | 5279 5319 5359
5478 5517 | 5557 5596 5636 | 5675 5714 5753
5871 5910 | 5948 5987 6026 | 6064 6103 6141
6255 6293 | 6331 6368 6406 | 6443 6480 6517
6628 6664 | 6700 6736 6772 | 6808 6844 6879
6985 7019 | 7054 7088 7123 | 7157 7190 7224
7324 7357 | 7389 7422 7454 | 7486 7517 7549
7642 7673 | 7704 7734 7764 | 7794 7823 7852
7939 7967 | 7995 8023 8051 | 8078 8106 8133
8212 8238 | 8264 8289 8315 | 8340 8365 8389
8461 8485 | 8508 8531 8554 | 8577 8599 8621
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Normal Probability Distribution

Using Standard Normal Distribution Tables

The standard normal distribution table gives the values of F(z) =
Pr(Z < z) for non-negative values of z.

002 003 | 004 005 006 | 007 008 009
5080 5120 | 5160 5199 5239 | 5279 5319 5359
5478 5517 5557 5596 5636 5675 5714 5753
5871 5910 | 5948 5987 6026 | 6064 6103 6141
6255 6293 | 6331 6368 6406 | 6443 6480 6517
6628 6664 | 6700 6736 6772 | 6808 6844 6879
6985 7019 7054 7088 7123 7157 7190 7224
7324 7357 | 7389 7422 7454 | 7486 7517 7549
7642 7673 7704 7734 7764 7794 7823 7852
7939 7967 | 7995 8023 8051 | 8078 8106 8133
8212 8238 | 826418289 8315 | 8340 8365 8389
8461 8485 | 8508 8531 8554 | 8577 8599 8621
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Normal Probability Distribution

Using Standard Normal Distribution Tables

The standard normal distribution table gives the values of F(z) =
Pr(Z < z) for non-negative values of z.

002 003 | 004 005 006 | 007 008 009
5080 5120 | 5160 5199 5239 | 5279 5319 5359
5478 5517 5557 5596 5636 5675 5714 5753
5871 5910 | 5948 5987 6026 | 6064 6103 6141
6255 6293 | 6331 6368 6406 | 6443 6480 6517
6628 6664 | 6700 6736 6772 | 6808 6844 6879
6985 7019 7054 7088 7123 7157 7190 7224
7324 7357 | 7389 7422 7454 | 7486 7517 7549
7642 7673 7704 7734 7764 7794 7823 7852
7939 7967 | 7995 8023 8051 | 8078 8106 8133
8212 8238 | 826418289 8315 | 8340 8365 8389
8461 8485 | 8508 8531 8554 | 8577 8599 8621
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Normal Probability Distribution

Using Standard Normal Distribution Tables II

To use the standard normal distribution table for negative z, use
the symmetry property and the total law of probability

Pr(Z<—z)=1-Pr(Zz<7)
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Pr(Z < —0.94)
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Normal Probability Distribution

Using Standard Normal Distribution Tables II

To use the standard normal distribution table for negative z, use
the symmetry property and the total law of probability

Pr(Z<—z)=1-Pr(Zz<7)

For example

Pr(Z < —0.94) = Pr(Z > 0.94)
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Normal Probability Distribution

Using Standard Normal Distribution Tables II

To use the standard normal distribution table for negative z, use
the symmetry property and the total law of probability

Pr(Z<—z)=1-Pr(Zz<7)

For example

Pr(Z < —0.94) = Pr(Z > 0.94) = 1 — Pr(Z < 0.94)
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Normal Probability Distribution

Using Standard Normal Distribution Tables II

To use the standard normal distribution table for negative z, use
the symmetry property and the total law of probability

Pr(Z<—z)=1-Pr(Zz<7)

For example

Pr(Z < —0.94) = Pr(Z > 0.94) = 1 — Pr(Z < 0.94) = 0.1736

27 of 33



Normal Probability Distribution

Example 13

Example 13 (Computing Standard Normal Probabilities)

Find the area under the standard normal curve that lies
@ to the left of 7z = 2.5.
@ to the left of z = —1.55.
@ betweenz = 0and z = 0.78.
@ between z = —0.33 and z = 0.66.
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Normal Probability Distribution

Example 13

Example 13 (Computing Standard Normal Probabilities)

Find the area under the standard normal curve that lies
to the left of z = 2.5.

to the left of z = —1.55.

between z = 0 and z = 0.78.

between z = —0.33 and z = 0.66.

to the left of 7 = 2.5
Pr(Z < 2.5) = 0.9948

© 6 6 6 06
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Normal Probability Distribution

Example 13

Example 13 (Computing Standard Normal Probabilities)

Find the area under the standard normal curve that lies

@ to the left of 7z = 2.5.
@ totheleftof z = —1.55.
@ betweenz = 0and z = 0.78.
@ between z = —0.33 and z = 0.66. )
@ rotheleftofz =25
Pr(Z <2.5) =0.9948
@ rotheleftofz = —1.55

Pr(Z < —1.55) = 1 — Pr(Z < 1.55) = 0.0605

28 of 33



Normal Probability Distribution

Example 13

Example 13 (Computing Standard Normal Probabilities)

Find the area under the standard normal curve that lies

Q@

to the left of z = 2.5.

to the left of z = —1.55.

between z = 0 and z = 0.78.
between z = —0.33 and z = 0.66.

© 6 6 6 66

to the left of 7 = 2.5

Pr(Z < 2.5) = 0.9948

to the left of 7 = —1.55

Pr(Z < —1.55) = 1 — Pr(Z < 1.55) = 0.0605
between z = 0 and 7z = 0.78

Pr(Z < 0.78) — Pr(Z < 0) = 0.7823 — 0.5 = 0.2823
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Normal Probability Distribution

Example 13

Example 13 (Computing Standard Normal Probabilities)

Find the area under the standard normal curve that lies

Q@

to the left of z = 2.5.

to the left of z = —1.55.

between z = 0 and z = 0.78.
between z = —0.33 and z = 0.66.

e 6 6 6 e o e6

to the left of 7 = 2.5
Pr(Z < 2.5) = 0.9948
to the left of 7 = —1.55
Pr(Z < —1.55) = 1 — Pr(Z < 1.55) = 0.0605
between z = 0 and 7z = 0.78
Pr(Z < 0.78) — Pr(Z < 0) = 0.7823 — 0.5 = 0.2823
between z = —0.33 and z = 0.66
Pr(Z < 0.66) — Pr(Z < —0.33) = 0.7453 — (1 — Pr(Z < 0.33))
= 0.7453 — 0.3707 = 0.3746
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Normal Probability Distribution

Example 14

Example 14 (Converting to Standard Normal)

A random variable has a normal distribution with 1 = 69 and o = 5.1.
What are the probabilities that the random variable will take a value
@ less than 74.1

@ greater than 63.1
@ between 65 and 72.3
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Normal Probability Distribution

Example 14

Example 14 (Converting to Standard Normal)

A random variable has a normal distribution with 1 = 69 and o = 5.1.
What are the probabilities that the random variable will take a value

@ less than 74.1
@ greater than 63.1 o
@ between 65 and 72.3

Q@ less than 74.1
74.1 — 69

Pr(X <74.1) =Pr (ZS 51

) =Pr(Z<1)=0.8413
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Normal Probability Distribution

Example 14

Example 14 (Converting to Standard Normal)

A random variable has a normal distribution with 1 = 69 and o = 5.1.
What are the probabilities that the random variable will take a value

@ less than 74.1

greater than 63.1 o

(®)
@ between 65 and 72.3
(@)

less than 74.1
74.1 — 69

Pr(X <74.1) =Pr <Z§ 51

©

greater than 63.1

Pr(X > 63.1) = Pr(Z > —1.16) = 0.8770

)—Puzgn—amm
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Normal Probability Distribution

Example 14

Example 14 (Converting to Standard Normal)

A random variable has a normal distribution with 1 = 69 and o = 5.1.
What are the probabilities that the random variable will take a value

@ less than 74.1

greater than 63.1 o

(®)
@ between 65 and 72.3
(@)

less than 74.1
74.1 — 69

Pr(X <74.1) =Pr <Z§ 51

) =Pr(Z<1)=0.8413

©

greater than 63.1
Pr(X > 63.1) = Pr(Z > —1.16) = 0.8770
@ between 65 and 72.3
Pr(65 < X < 72.3) = Pr(—0.78 < Z < 0.64) = 0.5212



Normal Probability Distribution

Example 15

A very large group of students obtains test scores that are normally
distributed with mean 60 and standard deviation 15. Find the cutoff point for
the top 10% of all students for the test scores.
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Normal Probability Distribution

Example 15

A very large group of students obtains test scores that are normally
distributed with mean 60 and standard deviation 15. Find the cutoff point for
the top 10% of all students for the test scores.

Here we are using the tables in reverse ... we have a probability (0.10) and
want to find the particular value for z on the standard normal curves, and
then find the corresponding particular value for x on the normal curve
(corresponding to ;1 = 60 and o = 15).
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Normal Probability Distribution

Example 15

A very large group of students obtains test scores that are normally
distributed with mean 60 and standard deviation 15. Find the cutoff point for
the top 10% of all students for the test scores.

Here we are using the tables in reverse ... we have a probability (0.10) and
want to find the particular value for z on the standard normal curves, and
then find the corresponding particular value for x on the normal curve
(corresponding to ;1 = 60 and o = 15).

o standard normal probability — z

If Pr(Z <z) =0.90then z = 1.28

since z = 1.28 has probability value closest to 0.9.
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Normal Probability Distribution

Example 15

A very large group of students obtains test scores that are normally
distributed with mean 60 and standard deviation 15. Find the cutoff point for
the top 10% of all students for the test scores.

Here we are using the tables in reverse ... we have a probability (0.10) and
want to find the particular value for z on the standard normal curves, and
then find the corresponding particular value for x on the normal curve
(corresponding to ;1 = 60 and o = 15).

o standard normal probability — z

If Pr(Z <z) =0.90then z = 1.28

since z = 1.28 has probability value closest to 0.9.
e standard normal \/(0, 1) — normal (60, 15%)

z=128 — x=(1.28)(15)+50 = 79.2
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Normal Probability Distribution

Example 16

A random variable has a normal distribution with variance 100. Find its
mean if the probability that it will take on a value less than 77.5 is 0.8264.
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Normal Probability Distribution

Example 16

A random variable has a normal distribution with variance 100. Find its
mean if the probability that it will take on a value less than 77.5 is 0.8264.

@ From the problem statement, we know

Pr(X < 77.5) = 0.8264 = Pr(Z < 2)
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Normal Probability Distribution

Example 16

A random variable has a normal distribution with variance 100. Find its
mean if the probability that it will take on a value less than 77.5 is 0.8264.

@ From the problem statement, we know

Pr(X < 77.5) = 0.8264 = Pr(Z < 2)

@ We can determine z using the standard normal tables (in reverse)

Pr(Z<z)=08264 = =09
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Normal Probability Distribution

Example 16

A random variable has a normal distribution with variance 100. Find its
mean if the probability that it will take on a value less than 77.5 is 0.8264.

@ From the problem statement, we know

Pr(X < 77.5) = 0.8264 = Pr(Z < 2)

@ We can determine z using the standard normal tables (in reverse)

Pr(Z<z)=08264 = =09

@ The relationship between random variables X ~ A/ (y, 100) and Z
means

775 —p
— 094=—
o 10

— u =08.1
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Normal Probability Distribution Normal Distribution Approximation for Binomial Distribution

Normal Distribution Approximation to Binomial

Normal distribution can be used to approximate the binomial distribution.

This approximation allows to speed up the computation of probabilities
when the number of trials is large:

@ Recall, that the binomial has

EX|=p=mnp and Var[X] = 0% = np(1 — p)

o If the number of trials (n) is large and probability of success, p is close
to 0.5, so that np(1 — p) > 5, then the distribution of the random
variable

X—p  X—mnp

o np(1 —p)
is approximately a standard normal distribution.

Z
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Normal Probability Distribution Normal Distribution Approximation for Binomial Distribution

Example 17

An election forecaster has obtained a random sample of 900 voters in which
460 indicate that they will vote for Candidate A. Assuming that there are
only two candidates, what is the probability of Candidate A winning the
election?

What is the normal approximation to this probability?
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An election forecaster has obtained a random sample of 900 voters in which
460 indicate that they will vote for Candidate A. Assuming that there are
only two candidates, what is the probability of Candidate A winning the
election?

What is the normal approximation to this probability?

MODEL Binomial, ‘success’ = ‘vote for Candidate A’
@ n = number of voters n =900
@ p = probability of ‘success’ p =460/900 = 0.511
Pr(winning election) = Pr(X > 451) = 73.68%
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Normal Probability Distribution Normal Distribution Approximation for Binomial Distribution

Example 17

An election forecaster has obtained a random sample of 900 voters in which
460 indicate that they will vote for Candidate A. Assuming that there are
only two candidates, what is the probability of Candidate A winning the
election?

What is the normal approximation to this probability?

MODEL Binomial, ‘success’ = ‘vote for Candidate A’
@ n = number of voters n =900
@ p = probability of ‘success’ p =460/900 = 0.511
Pr(winning election) = Pr(X > 451) = 73.68%
MODEL Normal
@ Mean . = np = 500

@ Variance 0> = np(1 — p) = 224.89 np(l —p)>5?7v
451 — 460

Pr(winning election) = Pr(X > 451) = Pr (Z > > = 72.59%
Vv224.89
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